SMES of the 10,000kW for the power control in power system has been manufactured, and connected to a real power grid. In addition, innovative basic researches, for example, low cost converter, maintenance-free cryo-coolers, inter-locks system and so on, have also been developed. The SMES was installed in the metal rolling factory with hydro power plant. Field test has been carried out for load fluctuation compensation. SMES was able to compensate for the active power according to the fluctuating load, and confirm the situation with a smooth load change of 11kV bus of hydro power stations.

Field test of 10MVA/20MJ SMES for load fluctuation compensation had been carried out successfully and following items were confirmed.

Figure 1 shows Superconducting Coil Cryostat of the SMES.

(1) Active Power Control
It was confirmed that the fluctuation load was reduced due to the input/output of SMES active power at the connection point with the 11kV medium voltage network.

(2) Reactive Power Control
It was confirmed that the reactive power control of the generators was reduced due to the input/output of SMES reactive power.

It was also confirmed that the field current and the field voltage of the generators were lowered.

(3) Number of Operations for Load Fluctuation Compensation
It was confirmed that over 50,000 operations were executed.

(4) The perfection level and reliability of the system were confirmed through protected operation, control, and normal operation.

(5) Verification of High-Speed Response
Confirmed high-speed following capability up to several Hz. Step responses for active power and reactive power was less than 20ms. Regarding the status of the amplitude ratio and phase differences of the frequency response, high-speed following capability up to several Hz was confirmed.

In the future, it will be necessary to develop improved technologies that can contribute to power system control by establishing the optimal integration of the SMES system with existing power sources, dispersed power sources, which are expected to become more common, and wind power plants. In addition, it will also be important to improve the related technologies in order to reduce SMES costs by developing coils using next-generation wires, and to promote the verification of high reliability necessary for power equipment.

Tosho Katagiri
Superconductivity Group
Electric Power Research and Development Center
Chubu Electric Power Co., Inc.
Nagoya, Japan

SEM Photos and Space Charge Distributions before and after Electrochemical Migration Growth in a Printed Wiring Board

Electrochemical migration is a kind of electrochemical phenomenon, in which conductor materials are ionized and migrated to and through the insulation layer by electric field. Nowadays, insulating materials for printed wiring boards (PWBs) must have even higher resistance to electrochemical migration in order to maintain long-lasting high reliability. Therefore, to study characteristics of migration, a reliable non-destructive method to detect its growth in the thickness direction is required.

A paper/phenol-resin composite PWB was set between a copper anode and an aluminum earthed cathode at 85 °C and 85 %RH, and a dc electric field of 3 kV/mm was applied for 98 hours to induce electrochemical migration. Upper and middle four figures show surface and cross sectional microscopic images.
observed for a PWB before and after the migration experiment. Growth of electrochemical migration with a length more than 1 mm along the surface direction from an anode edge is clearly shown in the two left optical microscopy images. Furthermore, penetration of migration through the adhesive layer and its extension into the bulk is clearly seen in the right scanning electron microscopy (SEM) images, which are superposed by energy-dispersive spectroscopic images showing the presence of Cu atoms by red dots.

The lower figure shows space charge distributions obtained by the pulsed electroacoustic (PEA) method for the PWB before and after the aging. Note that repetitive oscillatory signals appearing in the paper/resin composite are caused by eight-layered lamination of prepreg. Before the aging, a large amount of negative charge is observed on the interface between the composite and adhesive layer. After the aging, the negative charge disappears and positive charge appears, indicating that migration penetrates the adhesive layer. To conclude, these figures clearly demonstrate that growth of electrochemical migration along the thickness direction in the paper/resin composite PWB can be detected by the PEA method.

M. Natsui, H. Asakawa, T. Tanaka, Y. Ohki
(Waseda University)

T. Maeno
(National Institute of Information and Communications Technology)

K. Okamoto
(Fuji Electric Advanced Technology)

Japan

Transactions of IEEJ

Six kinds of transactions are published. Five kinds of transactions are edited by five societies* in IEEJ. The other one (IEEJ Transactions on Electrical and Electronic Engineering) is bimonthly published in English, which are edited by editorial committees in IEEJ and five societies in turn.

(*) Five societies in IEEJ are as follows:
A: Fundamentals and Materials Society (This magazine is published from EINA Committee under this society.)
B: Power and Energy Society
C: Electronics, Information and Systems Society
D: Industry Applications Society
E: Sensors and Micromachines Society

(please visit http://www.iee.or.jp/index-eng.html)

You can browse papers in all kinds of magazines published by IEEJ at http://www2.iee.or.jp/ver2/honbu/14-magazine/index050.html (in Japanese)

You will be able to directly purchase the full text documents by PDF through the Pay-Per-View System.

IEEJ Transactions on Fundamentals and Materials

Three issues of Trans. on F and M were published in English during last one year. The other issues include papers in Japanese or in English. Any papers in any transaction can be browsed and downloaded at the website: http://www.jstage.jst.go.jp/browse/ieejfms/_vols

(Themes of the recent issues published in English)
Vol. 129-A No. 2(Feb. 2009) Special Issue on Technology 2009 : Reviews & Forecasts
Vol. 129-A No. 10(Oct. 2009) Recent Progress in Computational Electromagnetics and its Applications

Contents are listed at http://www2.ice.or.jp/ver2/honbu/90-eng/14-magazine/index.html.

(The way of purchasing a specific issue)
When a non-member of IEEJ purchases a specific issue, please send a purchase order to IEEJ by mail, fax or e-mail as follows:
- Purchase order should include
 - Your name, affiliation, fax, e-mail address (if you have) and postal address (where an account will be sent), the issue or issues and number of copies you want to purchase.
 - Where to send message:
 - Publications and sales section, IEEJ, Homat Ho-
You can browse papers in all kinds of magazines published by IEEJ at
http://www2.iee.or.jp/ver2/honbu/14-magazine/index050.html (in Japanese)
You will be able to directly purchase the full text documents by PDF through the Pay-Per-View System.

IEEJ TEEE (Transactions on Electrical and Electronic Engineering)

The journal “IEEJ TEEE" was launched in May 2006. It is an online magazine and published bimonthly from John Wiley & Sons, Inc. on the website:
http://www3.interscience.wiley.com/cgi-bin/jhome/112638268
This magazine is covered in Scientific Science Citation Index™ Expanded by Thomson Reuters.

IEEJ Technical Reports

Technical reports listed below were prepared by investigation committees in technical committees A to E in IEEJ and published from September in 2008 to September in 2009. Their extended summaries can be read in English on the web site below but the text of technical reports are described in Japanese.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Pub.date</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1127</td>
<td>Failure Extension Prevention Technology by Frequency Relay System</td>
<td>2008/09</td>
<td>¥1,260</td>
</tr>
<tr>
<td>1128</td>
<td>The latest Technology of Adaptive Motion Control to Environment</td>
<td>2008/09</td>
<td>¥6,142</td>
</tr>
<tr>
<td>1129</td>
<td>Advanced computational techniques for practical electromagnetic field analysis(2008.9.10)</td>
<td>2008/09</td>
<td>¥5,512</td>
</tr>
<tr>
<td>1130</td>
<td>The Statistics of Setting and Operation Situation of Shunt Power Capacitor in Japan</td>
<td>2008/09</td>
<td>¥3,465</td>
</tr>
<tr>
<td>1131</td>
<td>Current Situations and Problems of LSI Design and Education</td>
<td>2008/09</td>
<td>¥4,252</td>
</tr>
<tr>
<td>1132</td>
<td>Power Technology of Japan through the Experience of Developments and Surges Arrester for AC3.3 - 1100kV and HVDC125 - 600kV Power Systems</td>
<td>2008/09</td>
<td>¥2,625</td>
</tr>
<tr>
<td>1133</td>
<td>The Present State and View about Harmonic Magnetic Applications</td>
<td>2008/09</td>
<td>¥3,465</td>
</tr>
<tr>
<td>1134</td>
<td>Wavelet and Knowledge Discovery Technology</td>
<td>2008/09</td>
<td>¥4,095</td>
</tr>
<tr>
<td>1135</td>
<td>Education and Training Structure of Power System Operator</td>
<td>2008/10</td>
<td>¥1,470</td>
</tr>
<tr>
<td>1136</td>
<td>Technology Trend of Application of Environmentally Friendly Materials to Electrical Equipments</td>
<td>2008/10</td>
<td>¥3,465</td>
</tr>
<tr>
<td>1137</td>
<td>New Control Technology for Nano-scale servo</td>
<td>2008/10</td>
<td>¥6,300</td>
</tr>
<tr>
<td>1138</td>
<td>Advanced Energy Utilization MHD Power Generation</td>
<td>2008/11</td>
<td>¥4,252</td>
</tr>
<tr>
<td>1139</td>
<td>Reduction Technology of Iron Loss in Stator Core of Synchronous Generator</td>
<td>2008/11</td>
<td>¥3,937</td>
</tr>
<tr>
<td>1140</td>
<td>Systematize technology of multi degrees of freedom motors</td>
<td>2008/11</td>
<td>¥4,410</td>
</tr>
<tr>
<td>1141</td>
<td>Risk Management Technologies for Nuclear Power</td>
<td>2008/12</td>
<td>¥2,992</td>
</tr>
<tr>
<td>1142</td>
<td>Technical Report on “Advanced Measurements and Simulations for Discharges and Electrical Insulation in Vacuum”</td>
<td>2008/12</td>
<td>¥4,725</td>
</tr>
<tr>
<td>1143</td>
<td>Studies on Environmental Impact Reduction in Automobile Traffic with ITS Technologies</td>
<td>2009/01</td>
<td>¥4,095</td>
</tr>
<tr>
<td>1144</td>
<td>Study on equipment troubles of hydroelectric power plants</td>
<td>2009/01</td>
<td>¥5,197</td>
</tr>
<tr>
<td>1145</td>
<td>Trend in the latest technologies and applications of permanent magnet synchronous motors</td>
<td>2009/01</td>
<td>¥4,095</td>
</tr>
<tr>
<td>1146</td>
<td>The Structural Technology of ICT-oriented Central Supervisory Control System</td>
<td>2009/02</td>
<td>¥3,465</td>
</tr>
<tr>
<td>1147</td>
<td>Lightning striking characteristics to structures</td>
<td>2009/03</td>
<td>¥4,252</td>
</tr>
<tr>
<td>1148</td>
<td>Characteristics Evaluation and Potential Applications of Polymer Nanocomposites as Evolutional Electrical Insulating Materials</td>
<td>2009/03</td>
<td>¥5,040</td>
</tr>
<tr>
<td>1149</td>
<td>Thermal Stability, Applications and Coercivity of High-Performance Permanent Magnets -</td>
<td>2009/03</td>
<td>¥3,622</td>
</tr>
</tbody>
</table>

- Evaluation of Long Term Stability of Rare Earth Magnets in a Partially Magnetized State and Investigation on their Applications and Coercivity of the Magnets -
| 1150 | The present simulation technologies and its applications | 2009/06 | ¥4,095 |
| 1151 | Advances and industrial applications of soft computing | 2009/04 | ¥6,930 |
| 1154 | Elemental technology use for industrial linear electromagnetic drive systems and their trend | 2009/05 | ¥3,937 |
| 1155 | Technology Trends in Energy Systems of Information Apparatuses in Homes and Offices in the Broadband Network Age | 2009/06 | ¥4,095 |
| 1156 | Trend of Fusion Technology on Electric and Mechanical Systems for Magnetic Suspension Applications | 2009/06 | ¥3,780 |
Application for Membership of IEEJ

A member of IEEJ receives a monthly journal (The Journal of The Institute of Electrical Engineers of Japan) and one transaction out of five (A: Fundamentals and Materials in which the activity of DEI is included, B: Power and Energy, C: Electronics, Information and System, D: Industry Applications, E: Sensors). The journal gives interesting readings about the latest science and technology in the field of Power Energy, Power Apparatus, Electronics, Information Engineering, Materials and so on. The transaction gives review papers, research papers, letters and other information. Total fee for joining IEEJ as a general individual membership is ¥ 12,400 which consists of initiation fee ¥ 1,200, annual membership fee ¥ 10,000 and overseas postage of journal ¥ 1,200 (¥ : Japanese Yen).

You can choose web application or sending an application form by e-mail or airmail for your application.

Please visit http://www2.iee.or.jp/ver2/honbu/90-eng/12-bid/index.html

Way for Purchasing Proceedings of IEEJ Technical Meetings and IEEJ Technical Reports

(1) Proceedings of Symposia
You can request it to the business and service section of IEEJ. (event@iee.or.jp)

(2) Proceedings of Technical Meetings
You can purchase them by subscription for a year (Jan. to Dec.). Please request it to the business and service section of IEEJ. (event@iee.or.jp)

(3) Technical reports
You can order technical reports from the publishing section of IEEJ. (pub@iee.or.jp)

Please visit:
http://www.bookpark.ne.jp/cm/ieej/search.asp?flag=0&category=%8BZ%8Fp%95%F1%8D%90&mode=PDF
or
https://www.iee.or.jp/cfml/OA/front/NonAuthenticat e/bookpur/fbo_BookList.cfm?Kubun=5
Postal and e-mail Address of IEEJ:
The Institute of Electrical Engineers of Japan
8F HOMAT HORIZON Bldg., 6-2, Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan

(General affairs Section)
E-mail: member@ieee.or.jp

(Business Service Section)
E-mail: event@ieee.or.jp

(Publication & Sales Section)
E-mail: pub@ieee.or.jp

Fax: +81-3-3221-3704 (common)
Members of EINA Committee in 2009

Masayuki Nagao Toyohashi University of Technology (Chairman)
Toshikatsu Tanaka Waseda University (Adviser)
Yoshiyuki Inoue Toshiba Corporation (Secretary)
Masahiro Kozako Kyushu Institute of Technology (Secretary)
Hiroya Homma Central Research Institute of Electric Power Industry (Task Force)
Kazuyuki Tohyama Numazu National College of Technology (Task Force)
Naohumi Chiwata Hitachi Cable, Ltd.
Osamu Fujii NGK Insulators, Ltd.
Toshinari Hashizume Yazaki Electric Wire Co., Ltd.
Noriyuki Hayashi Kyushu University
Kunihiko Hidaka The University of Tokyo
Masayuki Hirose Sumitomo Electric Industries, Ltd.
Satoru Hishikawa Huntsman Advanced Materials K. K.
Hiromasa Honjo Mitsubishi Cable Industries Ltd.
Satoru Itabashi Nissin Electric Co., Ltd.
Mitsumasa Iwamoto Tokyo Institute of Technology
Junpei Kusukawa Hitachi, Ltd.
Kouji Miyahara Chubu Electric Power Co., Inc.
Shinichi Mukoyama Furukawa Electric Co., Ltd.
Hirotaka Muto Mitsubishi Electric Corporation
Hiroyuki Nishikawa Shibaura Institute of Technology
Yoshimichi Ohki Waseda University
Kenji Okamoto Fuji Electric Advanced Technology Co., Ltd.
Minoru Okashita Showa Cable System Co., Ltd.
Yasuo Suzuki Nagoya University
Tatsuo Takada Tokyo City University
Tohru Takahashi VISCAS Corporation
Shin-ichi Tsuchiya Tokyo Electric Power Company
Yasuo Umeda Kansai Electric Power Co., Inc.
Hisanao Yamashita Keio University
Motoshige Yumoto Tokyo City University

Web Site for EINA Magazine

You can see the EINA magazine including back numbers at http://eina.ws/